
Hello
How to become a developer in less than 60 minutes



Hello
How to become a developer in less than 60 minutes

(jk)



Lars Erik Græsdal-Knutrud - https://larserik.dev

● M.Sc. Informatics @ NTNU Trondheim

● Acando/CGI

● Temporal AS

● Backend / Tech. project lead / Fullstack

● Currently on contract with Scoutdi - scoutdi.com

https://larserik.dev


https://docs.google.com/file/d/1MwLYaMZ4OHSF3gP50nSfGHFxrPR4F-UA/preview




Agenda

● Consultant life
● Web development basics
● Development lifecycle

○ Design / UX
○ Architecture
○ Development / OPS

● Common architecture components
● Open Source
● Questions and hopefully, answers



Consultant life

● Being on the team vs. being part of the team

● Startup life vs. enterprise life

● Contracts and predictability

● Skills, certifications and experience

● A consultant is also an advisor



Web development basics

● Single Page Application (SPA) + Back End = <3

● CRUD (Create, Read, Update, Delete)

● Frontend is usually React, Vue or Angular

● HTTP most important protocol in the stack

● JSON / XML used for data transport



HTTP introduction and basics



HTTP and the web



HTTP methods and usage

● GET
○ The GET method requests a representation of the specified resource. Requests using GET 

should only retrieve data.
● POST

○ The POST method submits an entity to the specified resource, often causing a change in state 
or side effects on the server.

● PUT / PATCH
○ The PUT method replaces all current representations of the target resource with the request 

payload. The PATCH method applies partial modifications to a resource.
● DELETE

○ The DELETE method deletes the specified resource.



Real life HTTP examples









Development lifecycle

● Architecture vision
● Design / Ux
● Architecture work
● Development / operations



User experience (UX) and design

● Manage stakeholders

● Create and understand personas

● Create sketches and designs

● User testing

● Iterate



Fuzzy design



Concrete design and design systems



Interactive prototypes

Step 3 Step 4



Architecture

● Set principles for development

● Map system needs

● Plan development

● Communicate intent



Diagrams



Development

● Realize goals through architecture
○ Update architecture if needed

● Make informed decisions on tech debt

● Solve problems not seen in architecture



Operations

● DevOps

● Security updates

● Logging, Monitoring and alerts



Common architectural components / buzzwords

● Containers (Docker)
○ Pack dependencies with application

○ Promotes reuse

○ Cross platform

○ Deployable artifacts



Kubernetes

● Container orchestrator

● Open source

● Extensible



Rolling deployments - initial state



Rolling deployments - final state



Rolling deployments - diff



Infrastructure as code

● Reproducible infrastructure

● Built in audit log

● Tools like Helm give great modularity

● No more miss-clicks



Monolith vs. microservices

Monolith pros:

● Low infrastructure overhead

● Simple architecture

● Easy to test

Microservice pros:

● Language flexibility

● Individually scalable

● Services can be deployed separately



Serverless

● GCS Serverless, Azure Functions and AWS Lambda

● Allows for flexibility in language choices

● No to little time spent on infrastructure

● Might be complex for an entire application



Open Source



Questions



Sources

● scoutdi.com (Scout promo material)
● developer.mozilla.org (HTTP info and diagrams)
● kode24.no (Article about Brønnøysundregisteret and log4shell)
● kubernetes.io (Rolling deployment diagrams)
● github.com/nais/doc/ (NAIS)
● techradar (NPM Colors story)

https://www.techradar.com/news/thousands-of-open-source-projects-taken-down-by-disgruntled-developer

